02 沙漏下落速度的规律——颗粒流的性质
沙漏由上下两个封闭的玻璃空腔构成,里面装有光滑的玻璃微珠,微珠本质上就是平平无奇的小球,但是微珠聚集在一起就构成了一种全新的形态,他们可以像液体一样流动,又可以像固体一样静止,即颗粒流。
如果沙漏的脖子比较细,可能会形成拱形结构从而堵住沙漏,左右晃动沙漏可以破坏拱形结构,从而加速沙漏的下落速度。这便能解释“雪崩之下没有一片雪花是无辜的。”因为微小的扰动可以让雪花颗粒流动从而形成雪崩。
沙漏下落速度符合Janssen定律和Beverloo定律。Janssen定律指出当颗粒高度增大到一定程度,压力就不再变化了,即装有颗粒的圆柱筒底部的压力与堆积高度几乎无关。
而Beverloo定律得出颗粒通过系统的流量公式,公式中的几个数都是定值,所以沙漏下落的速度可以认为是匀速的。
而在慢镜头在观察沙漏中沙子的下落过程,可以发现沙子的下落不是均匀的,而是波动的。
法国科学家测量了沙漏中落下沙子的重量随时间如何变化,结果表明是阶梯状增加的。所以沙漏是一股一股下落的。而每一股的时间大致是个常数,所以沙漏和秒表计时的本质都是一下一下跳跃的。
实际上,沙漏中沙子在下落时,上层空气体积膨胀,压强降低,下层空气体积减小,压强增大,正是这个微小的压力差(大小约为几十Pa),使得沙漏下落减速了。随后上下气体重新连通,压差消失,所以沙漏加速,一加速又形成压差,又减速,反复如此。即,沙漏独特的性质来自于下落的颗粒流与上升的空气流之间的耦合。
在我们熟知的所有物理量中,时间无疑是最神秘的。沙漏是用来表征时间连续流淌的,但在微观量子力学的尺度下,时间本身是否连续,仍旧是未知数。
——本文摘自毕导的视频。